Qwen2 72B Instruct logo

Qwen2 72B Instruct

Qwen

Qwen2-72B-Instruct is a 72 billion parameter language model fine-tuned for instruction following. Boasting an extensive context window of 131,072 tokens, this model is part of the cutting-edge Qwen2 series. Demonstrating exceptional performance, it outperforms the majority of open-source models and rivals the capabilities of proprietary models in numerous benchmark evaluations.

Model Specifications

Technical details and capabilities of Qwen2 72B Instruct

Core Specifications

72.0B Parameters

Model size and complexity

131.1K / 131.1K

Input / Output tokens

July 22, 2024

Release date

Capabilities & License

Multimodal Support
Not Supported
Web Hydrated
No
License
tongyi-qianwen

Resources

Research Paper
https://arxiv.org/abs/2309.00071
API Reference
https://huggingface.co/Qwen/Qwen2-72B
Playground
https://huggingface.co/Qwen/Qwen2-72B
Code Repository
https://huggingface.co/Qwen/Qwen2-72B

Performance Insights

Check out how Qwen2 72B Instruct handles various AI tasks through comprehensive benchmark results.

100
75
50
25
0
91.1
GSM8K
91.1
(91%)
90.1
CMMLU
90.1
(90%)
87.6
HellaSwag
87.6
(88%)
86
HumanEval
86
(86%)
85.1
Winogrande
85.1
(85%)
83.8
C-Eval
83.8
(84%)
82.4
BBH
82.4
(82%)
82.3
MMLU
82.3
(82%)
80.2
MBPP
80.2
(80%)
79
EvalPlus
79
(79%)
69.2
MultiPL-E
69.2
(69%)
68.9
ARC Challenge
68.9
(69%)
64.4
MMLU-Pro
64.4
(64%)
59.7
MATH
59.7
(60%)
54.8
TruthfulQA
54.8
(55%)
44.4
TheroemQA
44.4
(44%)
42.4
GPQA
42.4
(42%)
GSM8K
CMMLU
HellaSwag
HumanEval
Winogrande
C-Eval
BBH
MMLU
MBPP
EvalPlus
MultiPL-E
ARC Challenge
MMLU-Pro
MATH
TruthfulQA
TheroemQA
GPQA

Model Comparison

See how Qwen2 72B Instruct stacks up against other leading models across key performance metrics.

90
72
54
36
18
0
82.3
MMLU - Qwen2 72B Instruct
82.3
(91%)
86.8
MMLU - Claude 3 Opus
86.8
(96%)
86.2
MMLU - Grok-2 mini
86.2
(96%)
78.9
MMLU - Phi-3.5-MoE-instruct
78.9
(88%)
87.3
MMLU - Llama 3.1 405B Instruct
87.3
(97%)
86
MMLU - Llama 3.3 70B Instruct
86
(96%)
64.4
MMLU-Pro - Qwen2 72B Instruct
64.4
(72%)
68.5
MMLU-Pro - Claude 3 Opus
68.5
(76%)
72
MMLU-Pro - Grok-2 mini
72
(80%)
54.3
MMLU-Pro - Phi-3.5-MoE-instruct
54.3
(60%)
73.3
MMLU-Pro - Llama 3.1 405B Instruct
73.3
(81%)
68.9
MMLU-Pro - Llama 3.3 70B Instruct
68.9
(77%)
42.4
GPQA - Qwen2 72B Instruct
42.4
(47%)
50.4
GPQA - Claude 3 Opus
50.4
(56%)
51
GPQA - Grok-2 mini
51
(57%)
36.8
GPQA - Phi-3.5-MoE-instruct
36.8
(41%)
50.7
GPQA - Llama 3.1 405B Instruct
50.7
(56%)
50.5
GPQA - Llama 3.3 70B Instruct
50.5
(56%)
86
HumanEval - Qwen2 72B Instruct
86
(96%)
84.9
HumanEval - Claude 3 Opus
84.9
(94%)
85.7
HumanEval - Grok-2 mini
85.7
(95%)
70.7
HumanEval - Phi-3.5-MoE-instruct
70.7
(79%)
89
HumanEval - Llama 3.1 405B Instruct
89
(99%)
88.4
HumanEval - Llama 3.3 70B Instruct
88.4
(98%)
59.7
MATH - Qwen2 72B Instruct
59.7
(66%)
60.1
MATH - Claude 3 Opus
60.1
(67%)
73
MATH - Grok-2 mini
73
(81%)
59.5
MATH - Phi-3.5-MoE-instruct
59.5
(66%)
73.8
MATH - Llama 3.1 405B Instruct
73.8
(82%)
77
MATH - Llama 3.3 70B Instruct
77
(86%)
MMLU
MMLU-Pro
GPQA
HumanEval
MATH
Qwen2 72B Instruct
Claude 3 Opus
Grok-2 mini
Phi-3.5-MoE-instruct
Llama 3.1 405B Instruct
Llama 3.3 70B Instruct

Detailed Benchmarks

Dive deeper into Qwen2 72B Instruct's performance across specific task categories. Expand each section to see detailed metrics and comparisons.

Reasoning

HellaSwag

Current model
Other models
Avg (87.0%)

Non categorized

TheroemQA

Current model
Other models
Avg (34.9%)

BBH

Current model
Other models
Avg (81.8%)

Winogrande

Current model
Other models
Avg (82.2%)

MultiPL-E

Current model
Other models
Avg (70.3%)

C-Eval

Current model
Other models
Avg (84.8%)

Providers Pricing Coming Soon

We're working on gathering comprehensive pricing data from all major providers for Qwen2 72B Instruct. Compare costs across platforms to find the best pricing for your use case.

OpenAI
Anthropic
Google
Mistral AI
Cohere

Share your feedback

Hi, I'm Charlie Palars, the founder of Deepranking.ai. I'm always looking for ways to improve the site and make it more useful for you. You can write me through this form or directly through X at @palarsio.

Your feedback helps us improve our service

Stay Ahead with AI Updates

Get insights on Gemini Pro 2.5, Sonnet 3.7 and more top AI models